Bengier Ülgen Kılıç

• Ph.D. in Applied Mathematics 2023 University at Buffalo, The State University of New York (SUNY), New York, USA 2017 • B.S. in Mathematics Boğaziçi University, Istanbul, Turkey Work Experience _ • Postdoctoral Research Fellow 2023 - Present Biomedical Engineering Department, Lerner Research Institute, Cleveland Clinic, OH, USA • Graduate Research Assistant 2019 - 2023 Department of Mathematics, University at Buffalo, SUNY, NY, USA • Graduate Teaching Assistant 2017 - 2022 Department of Mathematics, University at Buffalo, SUNY, NY, USA • Adjunct Instructor 2019 - 2020

Department of Mathematics, University at Buffalo, SUNY, NY, USA

Publications _

- Kilic, B. Ü., Taylor, D. Predicting structure-function interplay from neuronal dynamics on networks, 2024. (in preparation)
- Kilic, B. Ü., Moore, C. H. and Marasco, P. Coordinate-based meta-analytical approach to reveal cortical core-periphery network organization for the sense of body ownership, 2024. (in preparation)
- Kilic, B. Ü., Muldoon, S.F. Skeleton coupling: a novel interlayer mapping of community evolution in temporal networks, Journal of Complex Networks, Volume 12, Issue 2, cnae011, 2024 https://doi.org/10.1093/comnet/cnae011
- Kilic, B. Ü., Taylor, D. Simplicial cascades are orchestrated by the multidimensional geometry of neuronal complexes. Communications Physics 5, 278, 2022, https://doi.org/10.1038/s42005-022-01062-3.

Talks & Poster Presentations

• Boston University, Dynamical Systems Seminar (BU-DSS)	2022
(Seminar Talk) Thresholding and multi-body interactions orient cascades in spatially embedded networks.	
• Contagion on Complex Social Systems (CCSS)	2022
(Contributed Talk) A simplicial threshold model for higher-order cascades.	
• Network Science Society (Netsci2022)	2022
(C. T.) Simplicial cascades are orchestrated by the multidimensional geometry of neuronal complexes.	
• Northeastern Regional Conference on Complex Systems (NERCCS)	2022
(C. T.) Geometrical signatures of spreading activity from a neuronal threshold model.	
• Networks2021, A joint Sunbelt and NetSci conference	2021
(C. T.) Higher-order flow channels of neuronal avalanches uncovered by topological data analysis of simplicial conta	igions.
• Northeastern Regional Conference on Complex Systems (NERCCS)	2021
(C. T.) Characterization of communities in dynamic functional networks.	
(C. T.) Geometrical/topological data analyses reveal higher-order flow structures provide flow channels for neuronal a	valanches.
• Northeastern Regional Conference on Complex Systems (NERCCS)	2019
(C. T.) Biomedical image processing via persistent homology.	

Location: Cleveland, OH, USA Phone: +1 (716) 398 8356 E-mail: ulgenklc@gmail.com Linkedin: https://linkedin.com/in/ulgenklc Github: https://github.com/ulgenklc Website: https://ulgenklc.github.io

Education _

• Northeastern Regional Conference on Complex Systems (NERCCS)	2022
(Poster) Skeleton coupling: novel method for choosing interlayer edges in temporal networks for dynamic community	detection.
• Dynamics Days (DD)	2022
(Poster) Cascades over simplicial complexes preferably follow geometrically reinforced channels.	
• Society for Neuroscience (SFN)	2019
(Poster) Cell detection and segmentation via persistent homology.	
Professional Development	
• Mathematical Approaches for Connectome Analysis workshop, (IPAM, UCLA)	2024
• Neuromatch Academy Deep Learning summer workshop (NMA-DL)	2021
• Topological insights in Neuroscience (MSRI)	2021
• TopoNets, Networks beyond pairwise interactions, Satellite @ Networks 2021	2021
• Biology, Analysis, Geometry, Energies, Links (bagel19), IMA	2019
Awards and Honors	
• Obtained lodging funding from IPAM, UCLA. (\$1500)	2024
• Secured a funding from CIMPA-AESIM for the organization of DRP-Turkey. (\$4000)	2023
• Obtained travel and lodging grant from University of Colorado at Boulder, CCSS. (\$1000)	2022
• Rewarded by honorable mention of the best poster award, NERCCS.	2022
• Obtained travel and lodging grant from The Institute for Mathematics and Its Applications, IMA. (\$750)	2019
• Contributed to the project 'Seizure control through state-specific manipulation of cell assemblies' (NSF SMA-	(1734795).

- Reviews of Journal Papers _____
 - Frontiers in Computational Neuroscience (Review Editor)
 - Frontiers in Physics
 - Frontiers in Big Data
 - Chaos: An Interdisciplinary Journal of Nonlinear Science

Projects _

Donu-TDA: Unsupervised software for Donut-like Object segmeNtation Utilizing Topological Data Analysis

- Built a novel computer vision pipeline employing topological data analysis, raising accuracy by 5% and achieving highest score among 1,500 entries in KAGGLE's 2018 Data Science Bowl Cell Segmentation competition.
- Integrated a graphical user interface (GUI) for laboratory workflow using tkinter library in Python to correlate analysis results & automation processes, streamlining workflow by 15%.

Temporal network analysis: A novel interlayer mapping of community evolution in temporal networks

- Enhanced scalability and accuracy of dynamic community detection through developing an algorithm, 'skeleton coupling' which utilizes data-driven interlayer edge selection, resulting in 20% enhancement of graph clustering accuracy.
- Compiled an open-source application programming interface (API) using ReadtheDocs library in Python for 5 dynamic community detection algorithms utilizing skeleton coupling algorithm improving user experience by 25%.

Neuronal cascades: Computational framework for modeling neuronal dynamics on coupled network systems

- Developed an agent-based model on spatially embedded networks of over 1000 nodes, simulating 100s of diffusion processes via computational methods to replicate real-world events, validating accuracy with 97% correlation rate.
- Provided an open-source codebase in Cython based on provided model to facilitate quantitative research with a well-documented API enabling 40% faster runtime and simplifying code access process by 50%.

Software Expertise _

• Python (Numpy, scikit-learn, NetworkX, PyTorch, Tensorflow, PySpark, Pandas, matplotlib, Plotly, ReadTheDocs, Nilearn), SQL, Cython, Matlab (Brainstorm), SLURM, LATEX, Illustrator, MS Office, Github.

- Machine learning: Regression, Clustering, Decision trees, Classification, Dynamic community detection, Dimensional reduction, Network analysis, Time-series analysis, Topological data analysis, Signal-frequency analysis.
- Neural networks: Deep Learning, Image Recognition (CNNs), Natural Language Processing (RNNs).
- High performance computing: through Ohio Supercomputer Center and Wyoming Supercomputing Center.

Leadership and Organization _

• Organizer of Directed Reading Program - Turkey (DRP-Turkey)	2022 - 2023
Volunteer activity	
• Project mentor for 'Critical Thresholds for Epidemics on Networks' – (Directed Reading Program, Turkey	7) 2023
• Project mentor for 'Mathematics of deep learning' – (Directed Reading Program, Turkey)	2022
• Project mentor for 'Network analysis for real-world applications' – (UB, Directed Reading Program)	2022
• Project mentor for 'Graph theoretical analysis of brain networks' – (Directed Reading Program, Turkey)	2021
Languages	
• Turkish (Native) • English (Fluent) • Greek (Elementary)	
References	

- velerences
 - Dane Taylor (PhD Co-Advisor, dane.taylor@uwyo.edu) Assistant Professor, School of Computing, Department of Mathematics and Statistics, University of Wyoming
 - Sarah Muldoon (PhD Co-Advisor, smuldoon@buffalo.edu) Associate Professor, Department of Mathematics, Computational and Data-Enabled Sciences and Engineering Program and Neuroscience Program, University at Buffalo, SUNY

Skills _